Reactivity-Selectivity Relationship and Kinetic Solvent Isotope Effects in Nucleophilic Substitution Reactions

Ikchoon Lee, Han Joong Koh, Young Sook Park and Hai Whang Lee Department of Chemistry, Inha University, Inchon, 402-751, Korea

Selectivity plots, $\log(k_{x1}/k_{x2})$ vs. σ_{y} , have been obtained for various nucleophilic substitution reactions: (i) with anilines (N) in methanol (S), k_N/k_s , using literature data for YC₆H₄CH₂Cl, YC₆H₄COCl, YC₆H₄SO₂Cl, YC₆H₄COCH₂Br, YC₆H₄CH(CH₃)Cl and YC₆H₄CH[C(CH₃)₃]OSO₂C₆H₄NO₂; and (ii) with kinetic solvent isotope effects (KSIE) in water and methanol, k_{SOH}/k_{SOD} , determined in this work for the same compounds (except for the latter two). The two selectivity plots are shown to be equivalent in applying mechanistic criteria based on four reactivity–selectivity regions identified by the slopes of the selectivity plots, $\Delta \rho_{\gamma}$. Straightforward applications were possible in most cases except for the aminolysis of phenacyl bromides and 1-phenylethyl chlorides. For these two, detailed analyses of kinetic results were required, in addition to the reactivity–selectivity considerations, before deciding the reaction mechanism.

Variation of selectivity with substituent has been used in several different forms in the mechanistic interpretation of kinetic data for nucleophilic substitution reactions, eqn. (1), where normally

$$\log(k_{\mathbf{X}^1}/k_{\mathbf{X}^2}) = \Delta \rho_{\mathbf{Y}} \times \sigma_{\mathbf{Y}} \tag{1}$$

a stronger nucleophile is assigned to X¹ (k_{X^1}/k_{X^2}) and X² is used as a standard nucleophile for comparison. The $\Delta \rho_{\rm Y}$ value can be considered as a difference in the slopes of the Hammett plots for reactions of substituted $(\sigma_{\rm Y})$ substrates with two different nucleophiles, X^1 and X^2 . For example, in the constant selectivity relationship reported by Ritchie,¹ the relative nucleophilicity of a nucleophile, X^1 with water (X^2) is constant (N^+) , which is independent of the nature of carbocation (σ_Y) , so that $\Delta \rho_{\rm Y}$ is zero, region I in Fig. 1. Jencks et al.,² used azide, N_3^- , as X¹ and 50:50 trifluoroethanol-water solvent as X² and the selectivity values of k_{X^1}/k_{X^2} were determined by product analysis. They found that for ring-substituted 1-phenylethyl derivatives ($\sigma_{\rm Y}$), $\Delta \rho_{\rm Y}$ changed sign from negative ($\Delta \rho_{\rm Y} < 0$, region II) to zero ($\Delta \rho_{\rm Y} = 0$, region III) and then to positive $(\Delta \rho_{\rm Y} > 0, \text{ region IV})$ as the substituent in the substrate is varied from that of electron donating to electron withdrawing, $\sigma_{\mathbf{Y}^+} < 0 \rightarrow \sigma_{\mathbf{Y}^+} > 0$. A similar reactivity-selectivity relationship for carbocations was reported by Rappoport et al.,³ based on an extensive literature survey, in which they adopted water in 80% acetone, as X² and logarithms of the solvolysis rate constant (k_{solv}) of substrates as σ_{Y} in eqn (1). They found at least four different selectivity regions depending on the reactivity of the carbocations, encompassing all four regions reported by Ritchie¹ and Jencks² with negative (region II), zero (regions I and III) and positive (region IV) slopes, $\Delta \rho_{\rm Y}$, in Fig. 1. The four approximately linear parts have been shown to represent: (i) the region in which the most stable carbocations react with X^1 and X^2 in an activation-limited process, but the barrier is mainly due to solvent reorganization; (ii) the region in which the cations are unstable enough to react at the diffusion-controlled rate with strong nucleophile, e.g. $X^1 = N_3^-$, but not with the weaker nucleophile water; (iii) the region of limiting $S_N l$ process; and (iv) the $S_N 2$ region.

Recently we proposed that the sign of slopes of the logarithm of kinetic solvent isotope effect (KSIE = $k_{\text{SOH}}/k_{\text{SOD}}$, where S = H or CH₃) vs. σ_{Y} plots, eqn. (2) can be a useful mechanistic tool.⁴ This plot in fact represents the difference of two simple Hammett plots, log k_{SOH} vs. σ_{Y} and log k_{SOD} vs. σ_{Y} , with $\Delta \rho_{\text{Y}} = \rho_{\text{SOH}} - \rho_{\text{SOD}}$. In this work, we report KSIEs for

Fig. 1 Reactivity-selectivity patterns for various nucleophilic substitution reactions involving carbocations

various nucleophilic substitution reactions and show that the slopes, $\Delta \rho_{\rm Y}$ in eqn. (2), are in fact equivalent to the $\Delta \rho_{\rm Y}$ in

$$\log \text{KSIE} = \log (k_{\text{SOH}}/k_{\text{SOD}}) = (\rho_{\text{SOH}} - \rho_{\text{SOD}}) \times \sigma_{\text{Y}} = \Delta \rho_{\text{Y}} \times \sigma_{\text{Y}} \quad (2)$$

eqn. (1) and the sign of the slopes can be similarly interpreted in terms of the four regions in Fig. 1. It has been shown that the sign and magnitude of $\Delta \rho_{\rm Y}$ in eqn. (2) can be related to that of cross-interaction constants, $\rho_{\rm XY}^{\rm 5}$ in eqns (3) and (4) where X

$$\log \left(k_{XY} / k_0 \right) = \rho_X \sigma_X + \rho_Y \sigma_Y + \rho_{XY} \sigma_X \sigma_Y \tag{3}$$

$$\rho_{\mathbf{X}\mathbf{Y}} = \frac{\partial^2 \log k_{\mathbf{X}\mathbf{Y}}}{\partial \sigma_{\mathbf{X}} \times \partial \sigma_{\mathbf{Y}}} = \frac{\partial \rho_{\mathbf{Y}}}{\partial \sigma_{\mathbf{X}}} = \frac{\partial \rho_{\mathbf{X}}}{\partial \sigma_{\mathbf{Y}}}$$
(4)

and Y denote the nucleophile and substrate, respectively. It is obvious that eqn (1) [and also eqn. (2)] can be transformed into eqn. (4) by dividing both sides by $\Delta \sigma_X$ (= $\sigma_{X^1} - \sigma_{X^2}$); log (k_{X^1}/k_{X^2}) for a given substituent Y (σ_Y) can be expressed as $\Delta \log k_{XY}$, and hence eqn. (1) becomes

Fig. 2 Plots of log $(k_{\rm N}/k_{\rm S})$ vs. $\sigma_{\rm Y}$ for the reactions between benzyl chloride and aniline in methanol at 55.1 and 55.0 °C.

$$YC_6H_4CH_2CI + XC_6H_4NH_2 \xrightarrow{CH_3OH} k_N$$

$$\text{YC}_{6}\text{H}_{4}\text{CH}_{2}\text{Cl} + \text{CH}_{3}\text{OH} \xrightarrow{55.0\,\text{°C}} k$$

(•), X = p-CH₃O; (\Box), X = p-CH₃; (\bigcirc), X = H; (\triangle), X = p-Cl; (\Box), X = m-NO₂.

Fig. 3 Hammett ρ_{γ} plot for the reactions of substituted benzyl chlorides in water at 55.0 °C; (\bigcirc), H₂O; (\square), D₂O

$$\frac{\Delta \log k_{XY}}{\Delta \sigma_{Y}} = \Delta \rho_{Y} \quad \rho_{XY} = \frac{\partial \rho_{Y}}{\partial \sigma_{X}} \simeq \frac{\Delta \rho_{Y}}{\Delta \sigma_{X}}.$$

Since we normally take a stronger nucleophile (more negative or less positive σ_X) for X^1 , $\Delta \sigma_X$ is negative so that the sign of ρ_{XY} is opposite to that of $\Delta \rho_Y$, *i.e.*, ρ_{XY} is positive (negative) if $\Delta \rho_Y$ is negative (positive). It has also been shown that the magnitude of ρ_{XY} is proportional to the extent of bond making in the S_N2 transition state (TS).⁵ We determined KSIEs for solvolyses of YC₆H₄CH₂Cl, YC₆H₄COCl, YC₆H₄-SO₂Cl and YC₆H₄COCH₂Br in water and/or in methanol, and the results are discussed together with those of the reactions with aniline. The results for the reactions of 1-phenylethyl chlorides⁶ and α -*tert*-butyl benzenesulfonates⁷ with anilines and methanol are also included in the discussion, eqn. (5). The

Fig. 4 Plot of log ($k_{\rm SOH}/k_{\rm SOD}$) vs. σ for the solvolyses of substituted benzyl chlorides in water at 55.0 °C

selectivities (k_{X^1}/k_{X^2}) are expressed in two different ways using the observed rates: (i) with aniline and methanol; and (ii) with SOH and SOD (S = H or CH₃), for X¹ and X² in eqn. (1) respectively.

Results and Discussion

(1) Reactions of Y-Benzyl Chlorides.—(a) With X-anilines (N) in methanol (S).⁸ The simple Hammett plots of log k_N vs. σ_Y are linear with negative slopes, $\rho_{\rm Y} < 0$ ($\rho_{\rm Y} = -0.57$ ~ -0.59 for X = p-CH₃O ~ p-Cl), and the rate ratios, $k_{\rm N}/k_{\rm s}$, at 55 °C range from 25 ~ 59. The selectivity plots, $\log(k_N/k_s)$ vs. $\sigma_{\rm Y}$, are shown in Fig. 2. We note that parallel lines with positive slopes ($\Delta \rho_{\rm Y} > 0$), corresponding to reactions belonging to region IV in Fig. 1, are obtained with Y =electron-withdrawing substituents indicating that S_N2 mechanism is operative. Since anilines are stronger nucleophiles than methanol (i.e., $\sigma_{\mathbf{X}}$ is more negative or less positive) $\Delta \sigma_{\mathbf{X}}$ $(=\sigma_{X(N)} - \sigma_{X(S)})$ should be negative and hence ρ_{XY} [eqn. (4)] is negative. However the two electron-donating substituents (Y = p-CH₃O and p-CH₃) are seen to deviate from the straight line plots positively. Especially for $Y = p-CH_3O$, the differences in selectivity between different nucleophiles $(X = p-CH_3O \sim m-NO_2)$ become very small; this could be due to predominance of $S_N 1$ channel (regions II ~ III in Fig. 1) or alternatively due to increased S_N1 character for this compound. For the two electron-donating substituents, $Y = p-CH_3O$ and *p*-CH₃, $\Delta \rho_{\rm Y}$ is near zero or negative so that $\rho_{\rm XY} \cong 0$ or $\rho_{XY} > 0$ [eqn. (4) and Fig. 1]. The regions I ~ IV in Fig. 1 are originally assigned based on product selectivities, not with the observed rate constant ratios. However, discrepancies between the two selectivities or ambiguities arise only in the case of region II since for regions I and IV, the rate determining step coincides with the product forming step and for region III the rate ratios provide clear-cut criteria (vide infra). Therefore we must be cautious in interpreting the negative slopes of eqns. (1) and (2) using selectivities based on rate constants.

Table 1 Rate constants and kinetic solvent isotope effects for solvolyses of various substituted benzyl chlorides (YC₆H₄CH₂Cl) in water at 55.0 °C

Y	$k_{\rm H_2O}/{ m s}$	k_{D_2O}/s	$k_{\rm H_2O}/k_{\rm D_2O}$
p-CH ₃ p-CH ₃ H p-Cl m-Cl p-NO ₂	$\begin{array}{c} (33.9 \pm 0.4^{\circ}) \times 10^{-4} \\ (2.72 \pm 0.02) \times 10^{-4} \\ (1.94 \pm 0.02) \times 10^{-4} \\ (8.45 \pm 0.02) \times 10^{-5} \\ (6.92 \pm 0.05) \times 10^{-5} \\ (2.84 \pm 0.02) \times 10^{-5} \end{array}$	$\begin{array}{c} (29.5 \pm 0.4) \times 10^{-4} \\ (2.29 \pm 0.08) \times 10^{-4} \\ (1.36 \pm 0.01) \times 10^{-4} \\ (5.32 \pm 0.01) \times 10^{-5} \\ (4.07 \pm 0.02) \times 10^{-5} \\ (1.37 \pm 0.01) \times 10^{-5} \end{array}$	$\begin{array}{r} 1.15 \pm 0.02^{b} \\ 1.19 \pm 0.04 \\ 1.43 \pm 0.02 \\ 1.59 \pm 0.03 \\ 1.70 \pm 0.01 \\ 2.07 \pm 0.02 \end{array}$

^a Standard deviation from more than triplicate determinations. ^b Standard error; $\{=1/k_D[(\Delta k_H)^2 + (k_H/k_D)^2 \times (\Delta k_D)^2]^{\frac{1}{2}}\}$

Table 2 Rate constants and kinetic solvent isotope effects for solvolyses of various substituted benzyl chlorides (YC₆H₄CH₂Cl) in methanol at 55.0 °C

Y	k _{CH3OH} /s	k _{CH3OD} /s	k _{ch₃oh} /k _{ch₃od}
<i>p</i> -CH ₃ O <i>p</i> -CH ₃ H <i>p</i> -Cl <i>m</i> -Cl <i>p</i> -NO ₂	$\begin{array}{c} (95.1 \pm 0.3^{a}) \times 10^{-6} \\ (12.1 \pm 0.02) \times 10^{-6} \\ (7.40 \pm 0.20) \times 10^{-6} \\ (3.73 \pm 0.11) \times 10^{-6} \\ (2.96 \pm 0.01) \times 10^{-6} \\ (10.6 \pm 0.12) \times 10^{-7} \end{array}$	$\begin{array}{c} (83.2 \pm 0.6) \times 10^{-6} \\ (9.58 \pm 0.30) \times 10^{-6} \\ (5.62 \pm 0.30) \times 10^{-6} \\ (2.51 \pm 0.04) \times 10^{-6} \\ (1.75 \pm 0.05) \times 10^{-6} \\ (5.60 \pm 0.21) \times 10^{-7} \end{array}$	$\begin{array}{r} 1.14 \pm 0.01^{b} \\ 1.26 \pm 0.04 \\ 1.32 \pm 0.08 \\ 1.49 \pm 0.05 \\ 1.69 \pm 0.05 \\ 1.89 \pm 0.07 \end{array}$

^a Standard deviation from more than triplicate determinations. ^b Standard error; $\{=1/k_{\rm D}[(\Delta k_{\rm H})^2 + (k_{\rm H}/k_{\rm D})^2 \times (\Delta k_{\rm D})^2]^{\frac{1}{2}}\}^{9}$

Fig. 5 Hammett ρ_{Y} plot for the reactions of substituted benzoyl chlorides in methanol at 25.0 °C; (\bigcirc), CH₃OH; (\square), CH₃OD

(b) With SOH and SOD (S = H or CH₃). The rate data and the kinetic solvent isotope effects, KSIE = $k_{\text{SOH}}/k_{\text{SOD}}$, *i.e.*, the selectivities, are summarized in Tables 1 and 2, which are presented graphically in Figs. 3 and 4 for S = H.

We note that the KSIE values are greater than one in all cases. The simple Hammett plots, log k_{SOH} or log k_{SOD} vs. σ_{Y} , in Fig. 3 show two straight lines joined at $Y = CH_3$ with negative slopes, $\rho_{\rm Y} < 0$, whereas the selectivity plot, log ($k_{\rm SOH}/k_{\rm SOD}$) vs. $\sigma_{\rm Y}$, in Fig. 4 gives a single straight line with a positive slope, $\Delta \rho_{\rm Y} > 0$ ($\Delta \rho_{\rm Y} = +0.25$). The positive slope, corresponding to region IV in Fig. 1, indicates that the hydrolysis proceeds by an S_N^2 channel. Methanolysis (S = CH₃), exhibits exactly the same trends as those for the hydrolysis (S = H) in Figs. 3 and 4 with a slightly lower positive slope, $\Delta \rho_{\rm Y} = +0.21$. Since SOH is a stronger nucleophile than SOD, which is tantamount to a more negative or less positive σ_X for SOH than SOD, the hypothetical $\Delta \sigma_X$ $(= \sigma_{X(SOH)} - \delta_{X(SOD)})$ is negative,⁴ thus ρ_{XY} [eqn. (4)] should be negative since $\Delta \rho_{\rm Y} > 0$ and $\Delta \sigma_{\rm X} < 0$, as shown for region IV in Fig. 1.

In summary, both aminolyses and solvolyses, of benzyl chlorides are characterized by negative ρ_{Y} but positive $\Delta \rho_{Y}$

Fig. 6 Plot of $\log(k_{SOH}/k_{SOD})$ vs. σ for the solvolyses of substituted benzoyl chlorides in methanol at 25.0 °C

values ($\rho_{XY} < 0$), and can be classified into the nucleophilic substitution reactions belonging to region IV in Fig. 1, *i.e.*, S_N2 type reactions (with possibility of S_N1 mechanism for aminolysis with X = electron-donating substituents): $k_{SOH}/k_{SOD} > 0$, $\rho_Y < 0$, $\Delta \rho_Y > 0$, $\rho_{XY} < 0$ and belongs to region IV.

(2) Reactions of Y-Benzoyl Chlorides.—(a) With X-anilines (N) in methanol (S).¹⁰ The simple Hammett plots of log $k_N vs$. σ_Y are linear with positive slopes, $\rho_Y > 0$ ($\rho_Y = +$ 2.36 ~ 1.74 for X = p-CH₃ ~ m-NO₂), and the rate ratios, k_N/k_s , at 35 °C range from 49 ~ 119. The selectivity plots are linear and nearly parallel with positive slopes ($\Delta \rho_Y > 0$) of 2.0 ~ 1.4 for X = p-CH₃ ~ m-NO₂; this means that these reactions have negative ρ_{XY} and belong to region IV, proceeding by the S_N2 mechanism.

(b) With SOH and SOD (S = CH₃). The rates and KSIEs are summarized in Table 3, which are presented in Figs. 5 and 6. The KSIE values are greater than one in all cases. Examination of Fig. 5 reveals that the simple Hammett plots give two straight line parts joined at Y = p-Cl with positive slopes, $\rho_{\rm Y} > 0$. In contrast, the selectivity plot in Fig. 6 is a single straight line with a positive slope, $\Delta \rho_{\rm Y} = +0.28$, *i.e.*, $\rho_{\rm XY} < 0$, indicating that the methanolyses of benzoyl chlorides belong also to region

Table 3 Rate constants and kinetic solvent isotope effects for solvolyses of various substituted benzoylchlorides (YC₆H₄COCl) in methanol at 25.0 °C

 Y	k _{CH3OH} /s	k _{CH3OD} /s	$k_{\rm CH_3OH}/k_{\rm CH_3OD}$	CH3OD	
p-CH ₃	$(3.63 \pm 0.06^{a}) \times 10^{-3}$	$(3.05 \pm 0.01) \times 10^{-3}$	1.19 ± 0.04^{b}		
Ĥ	$(4.33 \pm 0.05) \times 10^{-3}$	$(2.80 \pm 0.05) \times 10^{-3}$	1.55 ± 0.03		
p-Cl	$(6.04 \pm 0.02) \times 10^{-3}$	$(3.47 \pm 0.01) \times 10^{-3}$	1.74 ± 0.03		
m-Cl	$(11.9 \pm 0.01) \times 10^{-3}$	$(5.81 \pm 0.05) \times 10^{-3}$	2.05 ± 0.02		
<i>p</i> -CN	$(30.5 \pm 0.30) \times 10^{-3}$	$(14.6 \pm 0.05) \times 10^{-3}$	2.09 ± 0.02		
p-NO ₂	$(44.1 \pm 0.40) \times 10^{-3}$	$(19.3 \pm 0.05) \times 10^{-3}$	2.29 ± 0.02		

^a Standard deviation from more than triplicate determinations. ^b Standard error; $\{=1/k_{\rm D}[(\triangle k_{\rm H})^2 + (k_{\rm H}/k_{\rm D})^2 \times (\triangle k_{\rm D}^2]^{\frac{1}{2}}\}$.

IV *i.e.*, proceed by the $S_N 2$ process. However, there is a possibility of addition-elimination mechanism ($S_A N$) involving a tetrahedral intermediate with the rate-limiting addition step. If this mechanism applies, the degree of bond formation will be greater than that for $S_N 2$ and we expect the selectivity values to be somewhat greater. The $\Delta \rho_Y = +0.28$, however, does not differ significantly from other values (see Table 7).

In summary, the reactions of benzoyl chlorides are characterized by the KSIE values of greater than one, positive $\rho_{\rm Y}$ and $\Delta \rho_{\rm Y}$ (negative $\rho_{\rm XY}$) values, and can be classified into the S_N reactions in region IV proceeding by S_N2 mechanism: $k_{\rm SOH}/k_{\rm SOD} > 1.0$, $\rho_{\rm Y} > 0$, $\Delta \rho_{\rm Y} > 0$, $\rho_{\rm XY} < 0$ and belongs to region IV.

(3) Reactions of Y-Benzenesulfonyl Chlorides.—(a) With Xanilines (N) in methanol (S).¹¹ The simple Hammett plots of log k_N vs. σ_Y are linear with positive slopes, $\rho_Y > 0$ (ρ_Y = +1.07 ~ 0.57 for X = p-CH₃ ~ m-NO₂), and the rate ratios, k_N/k_s , at 35 °C range from 27 ~ 91. The selectivity plots are linear with positive slopes ($\Delta \rho_Y > 0$) of +0.87 ~ +0.25 for X = p-CH₃ ~ m-NO₂, which indicate again that ρ_{XY} is negative and these reactions belong to region IV proceeding by the S_N2 mechanism.

(b) With SOH and SOD (S = H or CH₃). It has been shown that the KSIE values are greater than one in all cases⁴ and the simple Hammett plots for Y-benzenesulfonyl chlorides exhibit concave curves for both S = H and S = CH₃.⁴ However, the selectivity plots gave good straight lines with positive slopes, $\Delta \rho_{\rm Y} > 0$ ($\Delta \rho_{\rm H} = +0.15$ for S = CH₃ and +0.05 for S = H at 25 °C) with in turn leads to negative $\rho_{\rm XY}$ values. Thus, the reactions of benzenesulfonyl chlorides, are characterized by $k_{\rm SOH}/k_{\rm SOD} > 1.0$, variation of log $k_{\rm SOH}$ or log $k_{\rm SOD}$ vs. $\sigma_{\rm Y}$ gives a concave curve, $\Delta \rho_{\rm Y} > 0$, $\rho_{\rm XY} < 0$ and belongs to region IV proceeding by the S_N2 mechanism.

(4) Reactions of Y-phenacyl Bromides.—(a) With anilines (N) in methanol (S).¹² The simple Hammett plots, $\log k_N vs. \sigma_Y$, are linear with positive slopes, $\rho_{\rm Y} > 0$ ($\rho_{\rm Y} = 0.56 \sim 0.63$ for X = p-CH₃O ~ p-Cl), and the rate ratios, $k_N(45 \text{ °C})/k_s(55 \text{ °C})$, range from 64 ~ 99. The selectivity plots, $\log(k_N/k_S)$ vs. σ_Y , are linear, and nearly parallel, with negative slopes, $\Delta \rho_{\rm Y} < 0$ ($\Delta \rho_{\rm Y} =$ $-0.68 \sim -0.56$ for X = p-CH₃O ~ p-Cl), giving a positive ρ_{XY} ($\rho_{XY} > 0$). This means that the reactions of phenacyl bromides with relatively strong nucleophiles, aniline, belongs to region II in Fig. 1 according to the signs of $\Delta \rho_{Y}$ [eqn. (1)] and ρ_{XY} [eqn. (4)]. It has often been pointed out that the reactions of PhCOCH₂Br show some unusual features in the application of reactivity-selectivity relationship.¹³ One anomaly is that the S_N reactions of PhCOCH₂Br show negative $\Delta \rho_Y$ (positive ρ_{XY}), despite the fact that they exhibit normal S_N2 behaviours in many respects. For many $S_N 2$ type reactions reported, the reaction of phenacyl derivatives with anilines or benzylamines was the only one which had positive ρ_{XY} in contrast to negative ρ_{XY} found for all other S_N2 reactions.⁴

One can speculate that the α -carbonyl group delocalizes electronic charge transferred from a strong nucleophile and

stabilizes an addition complex, which proceeds with C_{α} -Br bond rupture in the rate-limiting step.* This could also be the reason why the interaction between σ_X and σ_Y is so weak *i.e.*, unusually small magnitude of ρ_{XY} ($\rho_{XY} = 0.11$ found for this reaction is much smaller than that, $|\rho_{XY}| \cong 0.7$, for normal S_N^2 processes even after allowing for the fall-off of $|\rho_{XY}|$ by half due to an intervening C=O group between the reaction centre, C_{α} , and the substituent, ρ_Y).

(b) With SOH and SOD (S = H or CH₃). The rate constants and KSIEs are summarized in Tables 4 and 5. The KSIE values are all greater than one and the simple Hammett plots gave excellent straight lines with positive slopes, $\rho_Y > 0$. The selectivity plots, log KSIE vs. ρ_Y , gave positive values of $\Delta \rho_Y = +0.24$ (for S = H) and +0.19 (for S = CH₃) leading to a negative ρ_{XY} . This means that the solvolyses proceed by the normal S_N2 mechanism, *i.e.* belongs to region IV, in contrast to the anomalous behaviour shown by the reactions with strong nucleophiles, aniline, with the opposite signs for $\Delta \rho_Y$ (<0) and ρ_{XY} (>0).

In summary, for the reactions of phenacyl bromides, $\rho_{\rm Y} > 0$, $\Delta \rho_{\rm Y} < 0$ and $\rho_{\rm XY} > 0$ for aminolysis, but $\rho_{\rm Y} > 0$, $\Delta \rho_{\rm Y} > 0$ and $\rho_{\rm XY} < 0$ with $k_{\rm SOH}/k_{\rm SOD} > 1.0$ for solvolysis. There may be a mechanistic change over from the reaction with a strong nucleophile to that of a weak one.

(5) Reactions of 1-(Y-Phenyl)ethyl Chlorides.—(a) With Xaniline (N) in methanol (S).⁶ The simple Hammett plots for this reaction log $k_{\rm N}$ vs. $\sigma_{\rm Y^+}$, gave two straight line parts joined at $\sigma_{Y^+} \cong 0$ with slopes, ρ_{Y^+} , ranging from $-3.5 \sim -5.5$ for Y = electron-donating substituents, and from $-1.3 \sim -2.5$ for Y = electron-withdrawing substituents, with $X = p-CH_3O$ ~ m-NO₂. The rate ratios, k_N/k_s , had values ranging from 17 ~ 480, and the selectivity plots, $\log(k_{\rm N}/k_{\rm S})$ vs. $\sigma_{\rm Y^+}$ gave curves crossing at $\sigma_{Y}^{+} \cong -0.2$ as shown in Fig. 7. The slope, $\Delta \rho_{Y^+}$, changes from small negative to very small positive, and hence ρ_{XY} changes sign from positive to negative, for weak nucleophile $X = m \cdot NO_2$, whereas it is large positive for the relatively strong nucleophiles, X = p-CH₃O ~ p-Cl. It appears that the reaction with m-nitroaniline belongs to region III and others to region IV. However, this reaction had unusually large negative ρ_{XY} (-2.05 for electron-donating and -1.34 for electron-withdrawing Y-substituents) and change of the sign of $\rho_{\rm X}$ as observed at $\sigma_{{\rm Y}^+} \cong -0.23$. Other kinetic evidence has led us to conclude that these reactions proceed by an ion-pair mechanism in which the nucleophile attacks the preformed carbocation intermediate $(S_N 2C^+)$, eqn. (6) (vide infra).

$$RZ \xleftarrow{k_1}{k_{-1}} R^+ Z^- \xrightarrow{N}{k_N} products \quad (6)$$

$$k_{\rm obsd} = K k_{\rm N} \tag{7a}$$

or
$$= Kk_s$$
 (7b)

* We thank one of the referees for suggesting this possibility.

Table 4 Rate constants and kinetic solvent isotope effects for solvolyses of various substituted phenacyl bromides (YC₆H₄COCH₂Br) in water at 55.0 °C

Y	k _{H2} 0/s	k_{D_2O}/s	$k_{\rm H_2O}/k_{\rm D_2O}$
<i>p</i> -CH ₃ O <i>p</i> -CH ₃ H <i>p</i> -Cl <i>p</i> -NO ₂	$\begin{array}{c} (8.76 \pm 0.09^{a}) \times 10^{-6} \\ (1.13 \pm 0.01) \times 10^{-5} \\ (2.30 \pm 0.01) \times 10^{-5} \\ (5.28 \pm 0.02) \times 10^{-5} \\ (33.3 \pm 0.03) \times 10^{-5} \end{array}$	$\begin{array}{c} (7.60 \pm 0.04) \times 10^{-6} \\ (0.890 \pm 0.002) \times 10^{-5} \\ (1.58 \pm 0.02) \times 10^{-5} \\ (3.47 \pm 0.03) \times 10^{-5} \\ (15.8 \pm 0.2) \times 10^{-5} \end{array}$	$\begin{array}{r} 1.15 \pm 0.01^{b} \\ 1.27 \pm 0.01 \\ 1.46 \pm 0.02 \\ 1.52 \pm 0.01 \\ 2.11 \pm 0.03 \end{array}$

^a Standard deviation from more than triplicate determinations. ^b Standard error; $\{=1/k_D[(\Delta k_H)^2 + (k_H/k_D)^2 \times (\Delta k_D)^2]^{\frac{1}{2}}\}$

Table 5 Rate constants and kinetic solvent isotope effects for solvolyses of various substituted phenacyl bromides (YC₆H₄COCH₂Br) in methanol at 55.0 °C

 Y	k _{CH3OH} /s	k _{снзор} /s	$k_{\rm CH_3OH}/k_{\rm CH_3OD}$	
p-CH ₃ O p-CH ₃ H p-Cl p-NO ₂	$\begin{array}{c} (3.37 \pm 0.04^{a}) \times 10^{-7} \\ (4.15 \pm 0.02) \times 10^{-7} \\ (9.12 \pm 0.04) \times 10^{-7} \\ (2.24 \pm 0.02) \times 10^{-6} \\ (1.67 \pm 0.01) \times 10^{-5} \end{array}$	$\begin{array}{c} (2.67 \pm 0.05) \times 10^{-7} \\ (3.25 \pm 0.03) \times 10^{-7} \\ (6.46 \pm 0.06) \times 10^{-7} \\ (1.45 \pm 0.01) \times 10^{-6} \\ (0.851 \pm 0.01) \times 10^{-5} \end{array}$	$\begin{array}{l} 1.26 \pm 0.03^{b} \\ 1.28 \pm 0.01 \\ 1.41 \pm 0.01 \\ 1.54 \pm 0.02 \\ 1.96 \pm 0.03 \end{array}$	

^a Standard deviation from more than triplicate determinations. ^b Standard error; $\{=1/k_{\rm D}[(\Delta k_{\rm H})^2 + (k_{\rm H}/k_{\rm D})^2 \times (\Delta k_{\rm D})^2]^{\frac{1}{2}}\}$

Fig. 7 Plot of $\log(k_{\rm N}/k_{\rm S})$ vs. $\sigma_{\rm Y^+}$ for the reactions between 1phenylethyl chlorides and anilines in methanol at 65.0 °C.

$$YC_{6}H_{4}CH(CH_{3})Cl + XC_{6}H_{4}NH_{2} \xrightarrow{CH_{3}OH} k_{N}$$
$$YC_{6}H_{4}CH(CH_{3})Cl + CH_{3}OH \longrightarrow k_{S}$$

(•), $X = p\text{-}CH_3O$; (\Box), $X = p\text{-}CH_3$; (\bigcirc), X = H; (\triangle), X = p-Cl; (\square), $X = m\text{-}NO_2$.

and

$$\rho_{\mathrm{Y(obsd)}}^{+} = \rho_{\mathrm{eq}}^{+} + \rho_{\mathrm{N}}^{+} \tag{8a}$$

or
$$= \rho_{eq}^+ + \rho_s^+$$
 (8b)

(82)

The ρ_{eq}^+ value should be large negative ($\rho_{eq}^+ \ll 0$), while $\rho_{\rm N}^{+}$ should be small positive ($\rho_{\rm N}^{+} > 0$) leading to a moderate negative $\rho^+_{Y(obsd)}$ value. Moreover, the magnitude of $\rho^+_{Y(obsd)}$ should decrease with a stronger nucleophile ($\rho_{\rm Y}^+ = -3.5$ for

 $X = p-CH_3O$ and -5.5 for $X = m-NO_2$) and also with an electron-withdrawing Y substituent, (ρ_Y^+ values are small negative for Y = electron-withdrawing group), since ρ_N^+ becomes large positive with a stronger nucleophile and $\rho_{\rm eq}^+$ becomes small negative with an unstable carbocation of the ion-pair intermediate for Y = electron-withdrawing group, in egn. (8a).

Furthermore, for this reaction the secondary kinetic isotope effects (SKIE) involving deuteriated aniline nucleophiles, $XC_6H_4ND_2$, were greater than one in all cases. If the reaction were proceeding by a normal $S_N 2$ mechanism, as in the reactions of methyl, ethyl, benzyl derivatives with anilines,^{5b} the $k_{\rm H}/k_{\rm D}$ values with deuteriated aniline nucleophiles would have been smaller than one, i.e., an inverse secondary kinetic isotope effect would have been observed;^{5b} in the normal S_N^2 process, the approach of nucleophile, aniline, is expected to hinder N-H(D) stretching and bending vibrations in the TS, leading to frequency increases in the TS with $k_{\rm H}/k_{\rm D} < 1.0^{.15,16}$ The $k_{\rm H}/k_{\rm D}$ values of greater than one observed for this reaction, and notably the largest value observed for Y = electron-donating group combined with X = electron-withdrawing group $(k_{\rm H}/$ $k_{\rm D} = 1.54$ for Y = p-CH₃ and X = m-NO₂) are consistent with the proposed $S_N 2C^+$ mechanism in which partial N-H bond cleavage *i.e.*, deprotonation, occurs with a general base catalysis by a nearby anion, X⁻, or by a methanol molecule. The partial bond cleavage of the N-H(D) bond in the TS will surely cause a normal SKIE of $k_{\rm H}/k_{\rm D} > 1.0$. This effect will be greater and hence $k_{\rm H}/k_{\rm D}$ (>1.0) will be larger, the greater is the base catalysis required (with a more delocalized carbocation with Y = electron-donating group), and the weaker is the N-H(D) bond (with the aniline with X = electron-withdrawing group), as evidenced by the observed $k_{\rm H}/k_{\rm D}$ values.

One could also argue that the reaction might be a limiting S_N1 (region III), or S_N1 with diffusion limited nucleophilic attack (region II), or desolvation barrier controlled process. However, the following observations lead us to discredit all of these possibilities. (i) The reactions were first order with respect to aniline and overall second order, in contrast to the zero order kinetics required with nucleophile for a limiting $S_N 1$ process. (ii) The ρ_{XY} values are very large negative, instead of $\rho_{XY} = 0$ required for a limiting S_N1 process,⁵ and a much smaller negative ρ_{XY} expected for an S_N2 reaction involving desolvation step in which the interaction between N and C_{α} will be very weak (small $|\rho_{XY}|$) due to long distance.^{17a} We note here that from eqn (4), $\rho_{XY} = \partial \rho_{Y(obsd)}^{+}/\partial \sigma_X = \partial \rho_{N}^{+}/\partial \sigma_X$ since $\partial \rho_{eq}^{+}/\partial \sigma_X = 0$ in eqn. (8a). (iii) The selectivities, k_N/k_s , vary over a relatively wide range, 17 ~ 480, so that the nucleophile attack may not be diffusion limited. (iv) For a given aniline nucleophile, the k_N values are dependent on the substrate, and hence the desolvation process cannot be rate limiting. (v) Neither of the two solvation modes, **2** and **3**, leads us to a greater than 1.0 SKIE, $k_H/k_D > 1.0$. In fact these types of

hydrogen bonds involving anilines with methanol should be weaker than hydrogen bonds between methanol molecules, since both the solute hydrogen bond acidities and basicities of anilines are in most cases lower than the corresponding values of MeOH¹⁸ precluding the possibility of desolvation barrier control reaction.

Richard *et al.*,^{17b} interpreted the negative β_x , *i.e.*, positive ρ_x , obtained for the reaction of amine nucleophiles (XRNH) with 4-CH₃SArCH(CF₃)⁺ is due to an increase in the strength of the solvent-nucleophile hydrogen bond leading to a decrease in K_d with increasing basicity of the nucleophile in Scheme 1, where $K_d = k_d/k_{-d}$, $k_{obsd} = K_d k_N$ and $\rho_{obsd}^X = \rho_d^X + \rho_N^X$.

$$^{+}CH(CF_{3})C_{6}H_{4}Y + XRNH \cdot HOS \xrightarrow{k_{4}} (Y = 4-CH_{3}S)$$

$$XRNH \cdot ^{+}CH(CF_{3})C_{6}H_{4}Y + HOS \xrightarrow{k_{N}} (KN - CH(CF_{3})C_{6}H_{4}Y + H_{2}O^{+}S)$$
Scheme 1

However, the possibility of this type of mechanism can also be ruled out for the 1-phenylethyl chlorides with anilines in methanol, since the strength of the MeOH-aniline hydrogen bond will be weaker than the MeOH-MeOH hydrogen bond.

The positive ρ_X values and $\rho_X = 0$ at $\sigma_Y^+ \cong -0.23$ are rationalized as follows. An electron-donating ring substituted (Y) causes the carbocation, \mathbf{R}^+ , to stabilize by resonance delocalization of positive charge, resulting in an increase in the thermodynamic barrier to carbocation capture by a nucleophile, eqn. (6); this resonance stabilization of the carbocation is, however, accompanied by an increase in the amount of electronic and structural reorganization required for carbocation capture *i.e.*, an increase in the intrinsic kinetic barrier occurs. For the substrates with $\sigma_{\rm Y}^+ < -0.23$ both the thermodynamic and the intrinsic barriers cause carbocation reactivity to decrease. The intrinsic barrier arises because the electronic and structural reorganizations lag behind the N-C_a bond making with proton transfer.¹⁹ This so-called non-perfect synchronization¹⁹ causes negative charge to accumulate on C_{α} in the TS, *i.e.*, an imbalanced TS¹⁹ is formed, leading to negatively charged N with the positive value of ρ_{X} . This TS imbalance phenomenon disappears as the ring (Y) substituent is made progressively less electron donating or more electron withdrawing, and a normal S_N2 attack on the carbocation by aniline nucleophile takes place with the normal negative $\rho_{\rm X}$

values; in the intermediate region of this two extremes with $\rho_X > 0$ and $\rho_X < 0$, the $\rho_X = 0$ value occurs.

Thus, the aminolysis of 1-phenylethyl chlorides in methanol proceeds by an ion-pair mechanism $(S_N 2C^+)$, albeit it appears to belong to regions III ~ IV. We can therefore conclude that the regions I ~ IV, shown in Fig. 1 may provide a necessary condition, but not a sufficient condition for the S_N mechanisms.

(b) With SOH and SOD (S=CH₃).²⁰ The KSIE values for Y = electron-donating group were greater than one $(k_{\rm H}/$ $k_{\rm D} > 1.0$) whereas they were inverse type ($k_{\rm H}/k_{\rm D} < 0$) for Y = electron-withdrawing group. The slopes of the simple Hammett plots, log k_{SOH} vs. σ_Y^+ and log k_{SOD} vs. σ_Y^+ , had negative values, *i.e.*, $\rho_{Y(SOH)}^+ < 0$ (-4.4) and large $\rho_{Y(SOD)}^+ < 0$ (-3.9). In addition the selectivity plot, log KSIE vs. $\sigma_{\rm Y}^+$, also had two linear parts of negative slopes ($\Delta \rho_{\rm Y}^+$ = -0.11 and -0.71 for Y = electron-donating and -withdrawing substituents, respectively) joined at approximately Y = H. This means that for the methanolysis the selectivity plot belongs to region II in Fig. 1. This is plausible since two extreme forms, 4 and 5, of the carbocations in the tight ion-pair intermediate, eqn. (6), for Y = electron-donating and -withdrawing groups should require a general base (CH₃OH) catalysis (or deprotonation) and desolvation, respectively, in the TS. This is why we observe $k_{\rm H}/k_{\rm D} > 1.0$ for the former and

Delocalized carbocation Localized carbocation

 $k_{\rm H}/k_{\rm D} < 1.0$ for the latter. Moreover the deprotonation and desolvation processes will be very fast. In this connection, we should note that solvent differs from other nucleophiles in that it is always in the immediate vicinity of the ion-pair intermediate formed, and there is no diffusion step necessary to allow its reaction. This means that for the reaction with solvent the rate determining step coincides with the product forming step, and the negative slope, $\Delta \rho_{\rm Y} < 0$, is a true indication that the reactions belong to region II with a rate-limiting attack on carbocation. We therefore believe that the mechanisms for aminolysis and methanolysis of 1-phenylethyl chlorides are the same $(S_N 2C^+)$ but $S_N 2$ character appears to prevail for the aminolysis whereas the S_N1 character appears to become more favoured for the methanolysis. The reactions of 1-phenylethyl chlorides in methanol is characterized by: $k_{SOH}/k_{SOD} > 1.0$ and $k_{\rm SOH}/k_{\rm SOD}$ < 1.0 for Y = electron-donating and -withdrawing substituents, respectivity, $\rho_Y^+ < 0$, $\Delta \rho_Y^+ < 0$, $\rho_{XY} > 0$ and belongs to region II.

(6) Reactions of Y- α -tert-Butyl Arenesulfonates.—(a) With Xanilines (N) in methanol (S).⁷ For this reaction, added aniline nucleophiles had no effect on the rates observed. Thus, $k_N = 0$ and $k_N/k_s = 0$ leading to $\Delta \rho_Y^+ = 0$ and $\rho_{XY} = 0$ as required by an S_N1 process in region III, in Fig. 1. (b) With SOH and SOD (S = CH₃).⁷ The slopes of the simple

(b) With SOH and SOD (S = CH₃).⁷ The slopes of the simple Hammett plots, log k_{SOH} vs. σ_{Y}^+ and log k_{SOD} vs. σ_{Y}^+ , had large negative values of nearly the same magnitude ($\rho_{\text{Y}}^+ =$ -3.85) and hence the selectivity plot, log ($k_{\text{SOH}}/k_{\text{SOD}}$) vs. σ_{Y}^+ , gave negligible slope, $\Delta \rho_{\text{Y}}^+ \cong 0$ ($\rho_{\text{XY}} = 0$), again as required by an S_N1 reaction belonging to region III in Fig. 1. We therefore conclude that the reactions of α -tert-butyl compounds proceed by a prototypical S_N1 mechanism: $\rho_{\text{Y}}^+ < 0$, $\Delta \rho_{\text{Y}}^+ = 0$, $\rho_{\text{XY}} = 0$ and belongs to region III. The results of all six reaction types are summarized in Tables 6 and 7.

Table 6 The slopes of simple Hammett and selectivity plots for nucleophilic substitution reactions with anilines (XC₆H₄NH₂) in methanol

Reactant ^a	<i>T</i> /°C	$\rho_{\rm Y}(\rho_{\rm Y}^+)$	ρ_{XY}	Ref.	
1 YC2H2CH3Cl	35.0	-0.63	-0.75	8	
2 YC ₂ H ₂ COCl	35.0	2.17	-0.68	10	
3 YC ₂ H ₂ SO ₂ Cl	35.0	0.96	-0.70	11	
4 YC ₂ H ₂ COCH ₂ Br	45.0	0.61	0.11	12	
5 YC ₆ H ₄ CH(CH ₃)Cl	65.0	$(-4.19)^{b}$	-2.05	6	
0 4 (<i>S</i>		$(-1.62)^{c}$	-1.34		
6 YC ₆ H ₄ CH[C(CH ₃) ₃]OSO ₂	$_{2}C_{6}H_{4}NO_{2}-p$ 35.0	-3.85	0	7	

^a Solvent CH₃OH. ^b Y = electron-donating substituents. ^c Y = electron-withdrawing substituents.

Table 7 The slopes of Hammett and selectivity plots for solvolyses with SOH and SOD ($S = H \text{ or } CH_3$)

 Reactant	Solvent	<i>T</i> /°C	$ ho_{ m Y}$	$\Delta ho_{ m Y}$	r ^c
 I YC ₆ H ₄ CH ₂ Cl	H ₂ O D ₂ O	55.0 55.0	-1.06 -1.29	+0.25	0.990
	CH₃OH CH₃OD	55.0 55.0	-1.10 -1.30	+0.21	0.985
2 YC ₆ H ₄ COCl	CH ₃ OH CH ₃ OD	25.0 25.0	+1.21 +0.94	+0.28	0.956
3 YC ₆ H ₄ SO ₂ Cl ⁴	H₂O D₂O	25.0 25.0	+0.24 ^{<i>a</i>} +0.19 ^{<i>a</i>}	+ 0.05	0.995
	CH ₃ OH CH ₃ OD	25.0 25.0	$+0.51^{a}$ +0.34 ^a	+0.15	0.991
4 YC ₆ H ₄ COCH ₂ Br	H ₂ O D ₂ O	55.0 55.0	+ 1.53 + 1.29	+0.24	0.988
	CH ₃ OH CH ₃ OD	55.0 55.0	+1.65 +1.46	+ 0.19	0.999
5 YC ₆ H ₄ CH(CH ₃)Cl ⁶	CH ₃ OH	65.0	$-5.20^{b,d}$ -3.55 ^{a,d}		
	CH ₃ OD	65.0	$-5.06^{b,d}$ $-2.80^{a,d}$	-0.14 ^b -0.75 ^a	0.997 0.998
6 $YC_6H_4CH[C(CH_3)_3]OSO_2C_6H_4NO_2-p^7$	CH₃OH CH₃OD	35.0 35.0	- 3.85 ^d - 3.85 ^d	0	

^a Electron-withdrawing substituents. ^b Electron-donating substituents. ^c Correlation coefficient. ^d $\rho_{\rm Y}^{\star}$.

We conclude that the slopes, $\Delta \rho_{\rm Y}$, of the selectivity plots using the rate ratios can be useful in mechanistic studies for nucleophilic substitution reactions.

(i) A normal $S_N 2$ reaction is characterized by a positive slope, $\Delta \rho_Y > 0$ ($\rho_{XY} < 0$), of the selectivity plot.

(ii) A prototypical limiting $S_N l$ process is characterized by a zero slope, $\Delta \rho_Y = 0$ ($\rho_{XY} = 0$), of the selectivity plot.

(iii) The log KSIE vs. $\sigma_{\rm Y}$ plots are equivalent to the selectivity plots and hence the slopes of such plots can be interpreted similarly.

(iv) The selectivity plots give in most cases a single straight line, irrespective of whether the simple Hammett plots are nonliner or linear with negative, or positive slope.

(v) The reactions of phenacyl derivatives with relatively strong nucleophiles show unusual behaviors of negative slope, $\Delta \rho_{\rm Y} < 0 \ (\rho_{\rm XY} > 0)$.

(vi) The reactions of 1-phenylethyl chlorides with anilines proceed by an ion-pair mechanism in which the nucleophile attacks the preformed carbocation, albeit the positive slopes, $\Delta \rho_{\rm Y}$, appear to indicate that they belong to region IV.

(viii) The methanolysis of 1-phenylethyl chlorides proceed by a general base catalyzed (or deprotonation) or desolvation process depending on whether the substituents are electrondonating or -withdrawing, which are compatible with the negative slope, $\Delta \rho_{\rm Y}$, and $S_{\rm N}2C^+$ mechanism.

Experimental

Materials used are as reported previously.¹⁰ The kinetic solvent

isotope effects are determined as described previously.^{4,20} In the estimation of $k_{\rm N}/k_{\rm s}$, the $k_{\rm s}$ values used are obtained by dividing the observed pseudo-first order solvolysis rate constants, $k_{\rm obs}$, by the methanol concentration at 20.0 °C of 24.7 mol dm⁻³.²¹

Acknowledgements

We thank the Ministry of Education and the Korea Research Center for Theoretical Physics and Chemistry for support of this work. One of us (H. J. Koh) thanks the Inha University for the Post Doctoral Fellowship.

References

- (a) C. D. Ritchie, Acc. Chem. Res., 1972, 5, 348; (b) C. D. Ritchie, J. Am. Chem. Soc., 1975, 97, 1170.
- 2 J. P. Richard and W. P. Jencks, J. Am. Chem. Soc., 1982, 104, 4689.
- 3 R. Ta-Shma and Z. Rappoport., J. Am. Chem. Soc., 1983, 105, 6082.
- 4 I. S. Koo, I. Lee, J. U. Oh, K. Y. Yang and T. W. Bentley, J. Phys. Org. Chem., 1993, 6, 223.
- 5 (a) I. Lee, Chem. Soc. Rev., 1991, 19, 317; (b) I. Lee, Adv. Phys. Org. Chem., 1992, 27, 57.
- 6 I. Lee, W. H. Lee, H. W. Lee and T. W. Bentley, J. Chem. Soc., Perkin Trans. 2, 1993, 141.
- 7 I. Lee, M. S. Choi and H. W. Lee, to be published.
- 8 I. Lee, S. C. Sohn, B. C. Lee and H. B. Song, Bull. Korean Chem. Soc., 1983, 4, 208.
- 9 T. B. Crumpler and J. H. Yoh, *Chemical Computations and Errors*, Wiley, New York, 1940, p. 178.
- 10 I. Lee, C. S. Shim, S. Y. Chung, H. Y. Kim and H. W. Lee, J. Chem. Soc., Perkin Trans. 2, 1988, 1919.

J. CHEM. SOC. PERKIN TRANS. 2 1993

- 11 I. Lee and I. S. Koo, *Tetrahedron*, 1983, **39**, 1803. 12 I. Lee and I. C. Kim, *Bull. Korean Chem., Soc.*, 1988, **9**, 133.
- 13 E. Buncel and H. Wilson, J. Chem. Educ., 1987, 64, 475.
- 14 I. Lee, C. S. Shim, S. Y. Chung and H. W. Lee, J. Chem. Soc., Perkin Trans. 2, 1988, 975.
- 15 T. H. Lowry and K. S. Richardson, Mechanism and Theory in Organic Chemistry, 3rd ed., Harper and Row, New York, 1987, p. 238.
- 16 (a) I. H. Williams, J. Am. Chem. Soc., 1984, 106, 7206; (b) S. C. Tucker and D. G. Truhlar, J. Am. Chem. Soc., 1990, 112, 3338; (c) S. Wolfe and C. K. Kim, J. Am. Chem. Soc., 1991, 113, 8056.
- 17 (a) W. P. Jencks, M. T. Haber, D. Herschlag and K. Nazaretian, J. Am. Chem. Soc., 1986, 108, 479; (b) J. P. Richard, T. L. Amyes and T. Vontor, J. Am. Chem. Soc., 1992, 114, 5626; (c) U. Berg and W. P. Jencks, J. Am. Chem. Soc., 1991, 113, 6997.
- 18 (a) M. H. Abraham, P. L. Grellier, D. V. Prior, P. P. Duce, J. J. Morris and P. J. Taylor, J. Chem. Soc., Perkin Trans. 2, 1989, 699; (b) M. H. Abraham, P. L. Grellier, D. V. Prior, J. J. Morris and P. J. Taylor, J. Chem. Soc., Perkin Trans. 2, 1990, 521. 19 (a) C. F. Bernasconi, Tetrahedron, 1985, **41**, 3219; Acc. Chem. Res.,
- 1987, 20, 301; Adv. Phys. Org. Chem., 1992, 27, 118; (b) T. L. Amyes and J. P. Richard, J. Chem. Soc., Chem. Commun., 1991, 200.
- 20 I. Lee, W. H. Lee and H. W. Lee, J. Phys. Org. Chem., 1993, 6, 361.
- 21 J. A. Dean, Handbook of Organic Chemistry, McGraw-Hill, New York, 1987, tables 1-14.

Paper 3/02679E Received 11th May, 1993 Accepted 18th May, 1993